
 
 

DAMS SORT 

Sudeep Bisht1 
1 Department of Computer Science, Maharaja Surajmal Institute of Technology, Janakpuri, N.delhi 110058, India 

Email:sudeep.28.march@gmail.com 
ABSTRACT 

Sorting is a fundamental data structure which can find its applications in all our daily life. It is considered to be the most 
fundamental problem in study of algorithms. A sorting algorithm can be defined as an algorithm that arranges data in a 
sequential order. There are many sorts, some of which are bubble sort, cocktail sort, insertion sort, selection sort, quick 
sort, radix sort etc. Sorting finds its use in many operations such as cpu job scheduling, integer sorting etc. 

 In this paper the bubble sort is modified and has been presented with a new approach. The paper puts forth a 
modified algorithm called Dams algorithm that combines the technique of bubble sort with partitioning and modified 
diminishing sort. The results obtained by implementing this sort and comparing with bubble sort and cocktail sort showed 
that the proposed algorithm performed better than the two mentioned above. Hence a conclusion has been reached through 
experimental result that the proposed algorithm is better than the bubble and its bi-directional sort. 

Key Words: Algorithm, Bubble Sort, Cocktail Sort, Bi directional Bubble Sort, Dams Sort, Internal Sort, External sort 

 

INTRODUCTION 

Any program is written and implemented only after its 
algorithm is chalked down. An algorithm is a well defined 
computational procedure that transforms the input to output 
[1]. It can also be described as a step by step representation 
of a problem. 

 Donald Knuth listed 5 properties that differentiate an 
algorithm: 

 Finiteness: An algorithm must always terminate 
after a finite number of steps. Similar procedures 
which differ only in that they do not terminate can 
be described as computational methods. 

 Definiteness: Each step of an algorithm must be 
precisely defined; the actions to be carried out 
must be rigorously and unambiguously specified 
for each case. 

 Input: an algorithm has zero or more inputs: 
quantities that are given to it initially before the 
algorithm begins, or dynamically as the algorithm 
runs. 

 Output: An algorithm has one or more outputs; 
quantities that have a specified relation to the 
inputs. 

 Effectiveness: An algorithm is also generally 
expected to be effective, in the sense that its  

 
 
operations must all be sufficiently basic that they 
can in principle be done exactly and in a finite 
length of time by someone using pencil and 
paper.[2]  
 

Sorting finds its widespread use in job search, web search, 
telephone companies, libraries etc. Sorting can be classified 
into two parts: 

a) Internal sorting  b)External sorting 
When the list is to be sorted, the list resides completely in 
main memory then it is internal sort (e.g. bubble sort, 
selection etc) but if some part of list is in main memory and 
other part is in secondary memory, then it’s called external 
sort(e.g. two way sort, polyphase sort etc)[3]. 
In internal sort for sorting larger databases it may be 
necessary to hold only a chunk of data in memory at a time, 
since it won’t all fit. The rest of the data is normally held 
on some larger, but slower medium, like a hard-disk. Any 
reading or writing of data to and from this slower media 
can slow the sort process considerably. [4] 

  
Bubble Sort 

 

Bubble sort is an internal sort in which each pair of 
adjacent data item are compared and if they are found to be 
in an incorrect order are swapped, this process continued 
repeatedly. The pass through the list are repeated until no 
more swaps are required. In this sort (if sorting in 
ascending order) the largest element bubbles to the top in 

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 
ISSN 2229-5518 

441

IJSER © 2013 
http://www.ijser.org 

IJSER



 
 
the first pass then in the second pass the second largest 
element bubbles to its position. 
 
The sorting algorithm is measured in terms of the number 
of comparisons. There are n-1 comparisons for an array of 
n elements during 1st pass which places largest element in 
last position; there are n-2 comparisons in second step 
which places second largest element in the second last 
position and so on. 
Thus 
 F(n)=(n-1) + (n-2) + ….. + 2 + 1 
         =n(n-1)/2 [5]  
Time complexity of bubble sort algorithm is O(n2) 
 
Remark: Some programs use 1 bit variable flag to signal 
that no interchange takes place during pass. For flag=0 
after any pass, list is sorted and there is no need to 
continue. The number of passes is cut down, but it’s 
efficient when list is originally ‘almost’ in sorted order. [6] 

 
Example 

 

To understand how a bubble let us consider an array 
containing elements that is to be sorted. 
Starting from the first element the adjacent pair of elements 
are checked and if they are not in a correct order then they 
are swapped. In this sort in the first pass (if arranging array 
in ascending order) the largest element is placed in the last 
position and then in the second pass the second the second 
largest element is placed in its position and so on in the 
subsequent passes. For example let us consider an array 
below: 
 
 55 32 56 45 33 
 
A pictorial representation of implementation of bubble sort 
on this array is shown in Figure 1 
 
 
Pass 1 

 
 55 32 56 45 33 
 
 
 32 55 56 45 33 
 
 
 32 55 56 45 33 
 
  
 32 55 45 56 33  
 
 

 

Pass 2 

  
 32 55 45 33 56 

 
 
  
 32 55 45 33 56 

 

  

 32 45 55 33 56 

  

 

 32 45 33 55 56 
 
Pass 3 

  
 
 32 45 33 55 56 
  
 
 32 45 33 55 56 
  
 
 32 33 45 55 56 
  
 
 32 33 45 55 56 
  
 

: Represent a comparison between 
numbers with no swap 
  
: Represent a comparison between 
numbers then a swap 
 

 Figure 1: Illustration of bubble sort 
 
Algorithm (Bubble sort)[7]  
func bubblesort ( var a as array ) 
 for i = 1:n, 
    swapped = false 
    for j = n:i+1,  
        if a[j] < a[j-1],  
            swap a[j,j-1] 
            swapped = true 
    → invariant: a[1..i] in final position 
    break if not swapped 
end 
 
 
Cocktail Sort 

 
One of the variation of bubble sort is bi-directional sort 
also known as Cocktail sort or Shaker sort. This sorting 
technique is a stable sort. Cocktail sort is different from 
bubble sort for it sorts the list in both directions. [8] In this 
sort the largest element is bubbled to its position in the first 
pass after that the smallest value is bubbled to its position 
in the second pass. In the next pass the second largest 
element is bubbled to its position i.e. next – to – last. The 

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 
ISSN 2229-5518 

442

IJSER © 2013 
http://www.ijser.org 

IJSER



 
 
process is repeated until no more swaps are made in the last 
pass or if n passes are completed. 
 
 

 

 

Algorithm(Cocktail Sort)[8] 

 
procedure cocktailSort(A: list of sortable items) 
defined as: 
do 
 swapped := false 
    for each i in 0 to length (A) – 2 do: 
 if A[i] > A[i+1] then 
  swap(A[i], A[i+1]) 
  swapped :=true 
 end if 
      end for 
      if swapped = false then 
 break do-while loop 
      end if 
      swapped := false 
      for each i in length (A) – 2 to 0 do: 
 if A[i] > A[i+1] then 
  swap( A[i],A[i+1]) 
  swapped := true 
   end if 
 end for 
    while swapped 
    end procedure 
 

The Proposed Algorithm  

 
This algorithm (Dams algorithm) does not follow the 
traditional rule of bubble algorithm according to which at 
each pass the largest element bubbles to its fixed position. 
Instead in this algorithm the element selected bubbles to its 
position. The rest of the elements are positioned in the 
array with respect to the bubbled number. 
The proposed algorithm is stated as follows: 
 

a. The initial array (arr[]) is divided into sub arrays 
just like shell sort but here the first element is 
compared with the last element. 

b. If the elements are not found to be in their fixed 
position they are swapped.  

c. Next the second element is compared with the 
second last element and they are swapped if they 
are not found to be in the proper order.  

d. This comparison and swapping process continues 
until we have compared the last two elements (i.e. 
the middle elements) or we are only left with one 
element that is the middle element. 

e. Call Sort(arr[], low, high) 
 
 

Sort (arr[], low, high) 
Here 
 arr[] represents array to be sorted 
b_elepos represents position at which the element exists 
that is to be bubbled. 
high represents the pointer or integer pointing to the last 
position of arr[] 
low represents the pointer pointing to the first position of 
arr[] 
b_element represents the element that is bubbled 
 

1. [Initialization] 
 Hi <-high 
 b_elepos <- low 

2. The value pointed by Hi is compared with 
b_element. If arr[Hi] > b_element then the pointer  
Hi is decremented  

3. This process continues until Hi points to an 
element less than or equal to the b_element.  
 

4. The b_element is compared to its next adjacent 
element if Hi > b_elepos (assigning name next). 
Here 2 cases arise when the comparison is made. 
 7.1)  if (b_element >=  next) 
  7.1.1) swap(b_element, next) 
 7.2)  if(b_element< next) 
  7.1.1)  temp <- arr[Hi] 
  7.1.2)  arr[Hi] <- next 
  7.1.2)  next <- b_element 
  7.1.3)  b_element<-temp 
 In the above step a temp is assigned 
arr[Hi], then arr[Hi] is assigned value of next. 
 Further b_element is placed at the 
position of next and temp is placed in position 
 of b_element. 

5. b_elepos is incremented by 1. 
6. The steps 6-8 are repeated until b_elepos < Hi. 
7. A recursive call is made as: 

 7.1. dams (arr[], low, b_elepos-1) 
 7.2. dams (arr[], b_elepos+1,high) 

  The recursive call is made if low<high 
 
[END] 
 
Figure 2 shows how the sort works 
 
EXAPMPLE 

To understand this algorithm let us sort the following array 
using dams sort. 
 55 32 56 45 33 
 
A pictorial representation of dams sort is shown in Figure 2 
1st Pass 
  
 
 55 32 56 65 33 
 

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 
ISSN 2229-5518 

443

IJSER © 2013 
http://www.ijser.org 

IJSER



 
 
  
2nd Pass 
 
 33 32 56 65 55 
 
 
3rd Pass 
 
 33 32 56 65 55 
 
 
After the diminishing sort Dams function is called: 
Dams(arr[],0,4) 
 
Inside Dams Sort function is called  
 
Sort(arr[],0,4) 
 
 33 32 56 65 55 
      
 b_elepos    Hi 
 
 
 33 32 56 65 55 
 
        b_elepos   Hi 
 
 33 32 56 65 55 
 
 
 32 33 56 65 55 
 
         b_elepos   
  Hi 
 
 After b_elepos >= Hi Sort gives control to Dams 
and the function recursively calls itself 
 
 Dams(arr[],0,1) 
 Sort(arr[],0,1) 
 
 32 33 56 65 55 
 
 
 32 33 56 65 55 
 
         b_elepos Hi 
  
 32 33 56 65 55 
 
         b_elepos  
 Hi 
 
 32 33 56 65 55 
 
 

 Array subpart 
 sorted 
 
 Dams(arr[],2,4) 
 Sort(arr[],2,4) 
 
  
 32 33 56 65 55 
 
    
           b_elepos  Hi 
 
          2         3   
  
 32 33 56 65 55 
 
     Hi 
     
     1 
 
 32 33 55 56 65 
 
      
           b_elepos  Hi 
 
 32 33 55 56 65 
 
      
     Hi 
            b_elepos 
 
 32 33 55 56 65 
 
 
    Array subpart 
    sorted 
 
 Dams() recursive call stopped as in all the arrays 
further formed will have  
low >= high 
 
Sorted array: 
 
 32 33 55 56 65 
 

 
Figure 2: Illustration of Dams Sort 

 
Algorithm 

 
Dams sort (array, low, high) 

1. n <- high-low 
2. while(i<=(n-1)/2) 
3.  if(array[i]>array[n-i-1]) 
4.   Swap(a[i],a[n-i-1]) 
5.  i++ 

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 
ISSN 2229-5518 

444

IJSER © 2013 
http://www.ijser.org 

IJSER



 
 

6. If array sorted exit. 
 

7. If(low<high) 
8.  X <- Sort(a, low, high) 
9.  Dams sort(a,low,x-1) 
10.  Dams sort(a,x+1, max) 

 
 
[Sort] 
Sort (array, low, high) 
 
1. b_elepos <- low 
2. Hi <- high 
3. while(b_elepos <Hi) 
4.  while(a[Hi]>array[b_elepos]) 
5.   Hi— 

 
 

6.  If(b_elepos <Hi) 
7. If(array[b_elepos] < array[b_elepos+1]) 
8. temp=a[Hi] 
9. array[Hi]=array[b_elepos+1] 
10. array[b_elepos+1]=array[b_elepos] 
11. array[b_elepos]=temp 
12. If(array[b_elepos]>=array[b_elepos+1]) 
13. Swap 

(array(b_elepos),array(b_elepos+1)) 
14. Return b_elepos 

 
 

Algorithm Analysis 

 
Algorithms vary in process and output data. Thus there is 
an appreciable difference in terms of performance and 
space utilization. Performance of an algorithm is thus based 
on the time and memory requirement [10]. One of the 
method employed in algorithm analysis is – 
 Experimental analysis [11]. 
  
 Mostly the worst case and average case are 
analyzed because: 

1. It gives upper bound on running time for any input. 
2. For some algorithms worst case occur fairly often. 
3. The average case is often as bad as the worst case. 

 
 

CONCLUSION 

 

Table 1, 2, 3and 4 with the graphs (1, 2, 3 and 4) shown 
below shows the results are obtained. From the results in 
Table 1, 2,3and 4 the number of comparison and swaps are 
less than the Bubble and Cocktail sort. It can also be seen 
that as the size of array increases the number of swaps and 
comparisons decreases. Moreover the proposed sort is 
effective in sorting small as well as large data. Thus it can 
be concluded that the proposed algorithm is much more 
efficient that the rest of the two. 
 

REFERENCES 

 
1. ( Cormen, Thomas H.; Leiserson, Charles 

E., Rivest, Ronald L., Stein, Clifford (2001) 
[1990]. Introduction to Algorithms [1]) 

2. Donald Knuth. [The Art of Computer 
Programming, Volume 3: Sorting and Searching] 

3. [Data Structures- Deepak Gupta(2012 edition) ] 
4. [http://en.wikipedia.org/wiki/Internal_sort]. 
5. [Seymour Lipschutz – Schaum’s outlines (Data 

Structured)(Indian Adapted Edition 2006 edition)] 
6. [Seymour Lipschutz – Schaum’s outlines (Data 

Structured)(Indian Adapted Edition 2006 edition)] 
7. [ http://www.sorting-algorithms.com/bubble-sort]  
8. http://en.wikipedia.org/wiki/Cocktail_sort 
9. [Knuth, The Art of Computer Programming: 

Sorting and Searching, 2 ed., vol. 3.Addison-
Wesley, 1998.] 

10. [Data Structures- Deepak Gupta(2012 edition) ] 
11. ( Cormen, Thomas H.; Leiserson, Charles 

E., Rivest, Ronald L., Stein, Clifford (2001) 
[1990]. Introduction to Algorithms [1]) 

Experimental Analysis 

   
WORST CASE ANALYSIS* 
 

1. Number of swaps 
Array 
Size 

Bubble Sort Cocktail Sort Dams Sort 

100 4950 2500 50 
200 19900 10000 100 
300 44850 22500 150 
400 79800 40000 200 

Table 1 
 
 
 
 

 
 

2. Number of comparisons 
Array 
Size 

Bubble Sort Cocktail Sort Dams Sort 

100 4950 3774 149 
200 19900 15049 299 
300 44850 33824 449 
400 79800 60099 599 

*analysis done on bubble and cocktail’s worst case 
Table 2 

  

 

 

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 
ISSN 2229-5518 

445

IJSER © 2013 
http://www.ijser.org 

IJSER



 
 
 

 

AVERAGE CASE ANALYSIS  
 

1. Number of swaps 
Array 
Size 

Bubble Sort Cocktail Sort Dams Sort 

100 2529 1281 391 
200 8744 4485 990 
300 22704 10782 1652 
400 39659 19399 2465 

Table 3 
 

 
 
 

 
2. Number of comparisons 

Array 
Size 

Bubble Sort Cocktail Sort Dams Sort 

100 4929 2535 615 
200 19435 7810 1448 
300 44525 20540 2304 
400 79647 37022 3106 

Table 4 
 

GRAPHS 

 
# WORST CASE ANALYSIS 

 
 

Graph 1: Number of swaps     Graph 2: Number of comparisons 
 
 

 

# AVERAGE CASE ANALYSIS 

 Graph 3: Number of swaps     Graph 4: Number of comparisons 

 

4950

19900

44850

79800

2500

10000

22500

40000

50

100 150 200

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

100 200 300 400

bubble

cocktail

dams

4950

19900

44850

79800

3774

15049

33824

60099

149

299 449 599

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

100 200 300 400

bubble

cocktail

dams

2529

8744

22704

39659

1281

4485
10782

19399

391
990

1652
2465

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

100 200 300 400

bubble cocktail dams

4929

19435

44525

79647

2535

7810
20540

37022

615

1448
2304 3106

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

100 200 300 400

bubble cocktail dams

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 
ISSN 2229-5518 

446

IJSER © 2013 
http://www.ijser.org 

IJSER




